Operations and Planning for Connected Autonomous Vehicles: From Trajectory Control to Capacity Analysis

Xiaopeng (Shaw) Li
Associate Professor, Susan A. Bracken Faculty Fellow
Department of Civil and Environmental Engineering,
University of South Florida

8/16/2018

CUTR Webinar Series

Freeway Stop-and-Go Traffic
Arterial Operations

- Suboptimal timing – extra delay
- Stop-and-go waves – excessive fuel consumptions

Adverse Impacts

- Congestion
 - Exacerbate delay (3.7 billion hours/year) and congestion cost ($78 billion per year)
Adverse Impacts

- Increase fuel consumption & emission
 - 2.3 billion gallons of fuel /year
 - 70% U.S. petroleum fuel consumption
 - 30% U.S. greenhouse gas emission

Beijing, China | New York City, U.S

Adverse Impacts

- Safety hazards
 - 2,200,000 injuries
 - 33,000 fatalities
Connected and Automated Vehicles

- Information sharing
- Human drivers \rightarrow robot drivers

CAV for operations

- Enable trajectory-level vehicle control and coordination
- Fundamentals of highway traffic operations
 - Past – accommodating human drivers
 - Future - designing robot drivers
CAV for Planning: Capacity Booster?

- People expect connected automated vehicles can significantly increase (or even multiple) highway capacity
- How to realize this potential?

Steps to Improve CAV Capacity

- Microscopic trajectory control
 - Reduce headway
 - Improve traffic smoothness
- Macroscopic capacity analysis
 - Understand the relationship between CAV traffic characteristics (e.g., CAV penetration ratio) and macroscopic measures (e.g., traffic throughput)
- Validation
 - Field experiments
 - Data analysis
CAV-based Traffic Operations

CAV Trajectory Optimization

- Signalized Intersections
 - Coordinate signal timing with vehicle trajectory control

![Diagram showing human-driven traffic and CAV traffic](image)
Infrastructure

- Single lane highway segment \([0, L]\)
- Fixed signal timing \(G, R, G, \ldots\) at location \(L\)

![Diagram showing single lane highway segment with fixed signal timing.]

Entry Boundary Condition

- Indexed by \(n = 1, 2, \ldots, N\)
- Entry time \(t_n^-, \) speed \(v_n^-\), known a priori

![Diagram showing entry boundary condition with entry time and speed.]

\((t_n^-, v_n^-)\)
Physical Bounds

- Trajectory $p_n(t)$
- Speed $\dot{p}_n(t) \in [0, \bar{v}]$, acc. $\ddot{p}_n(t) \in [a, \bar{a}]$

Exit Boundary Constraint

- Exit during green time:
 $\text{mod}(p_n^{-1}(L), G + R) \leq G$
Vehicle Following Safety

- Two consecutive vehicles $n-1$ and n
- Shadow trajectory $p^S_{n-1}(t) = p_{n-1}(t + \tau) - s$
- Reaction time τ
- Safety spacing s
- Safety constraint: $p_n(t) \leq p^S_{n-1}(t)$

Travel Time MOE

$$ T := \sum_{n \in \mathbb{N}} \left(p^{-1}_n(L) - t_n^- \right) / N, $$
Fuel Consumption MOE

- E.g., VT-micro, CMEM, MOVES

\[E := \sum_{n=1}^{N} \int_{l_{n}}^{p_{n}^{-1}(L)} e\left(p_{n}(t), \dot{p}_{n}(t), \ddot{p}_{n}(t)\right) dt / N \]

Safety MOE

- Surrogate measure – Inverse Time-To-Collision (iTTC)

\[S := \sum_{n=1}^{N} \int_{l_{n}}^{p_{n}^{-1}(L)} H\left(h^{iTTC} - \frac{\dot{p}_{n}(t) - \dot{p}_{n-1}(t)}{p_{n-1}(t) - p_{n}(t) - l} \right) dt / N \]
Trajectory Optimization (TO)

\[\min_{\{p_n(t)\}} M\{p_n(t)\} := \alpha T + \beta E + \gamma S \]

subject to

- \(p_n(t^-) = 0; \forall n \) (entry)
- \(\dot{p}_n(t^-) = v_n^- \)
- \(0 \leq \ddot{p}_n(t) \leq \ddot{v}; \forall n, t \) (kinematics)
- \(a \leq \dddot{p}_n(t) \leq \dddot{a}, \forall n, t \) (kinematics)
- \(\text{mod}(p_n^{-1}(L), G + R) \leq G, \forall n \) (exit)
- \(p_n(t) \leq p_{n-1}(t + \tau) - s, \forall n \neq 1 \) (safety)

TOO DIFFICULT TO SOLVE

Solution Parsimonious Algorithms

- Shooting heuristic (SH)
 - A small number of analytical sections

\[\begin{array}{c}
\text{speed} \\
25 \\
20 \\
15 \\
10 \\
5 \\
0 \\
\end{array} \]

0

\[\begin{array}{c}
\text{time} \\
0 \\
\end{array} \]
Benchmark vs. SH

<table>
<thead>
<tr>
<th>C(s)</th>
<th>L(m)</th>
<th>f^s</th>
<th>ΔT</th>
<th>ΔE</th>
<th>ΔS</th>
<th>ΔM</th>
<th>Solution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1500</td>
<td>0.9</td>
<td>35.22%</td>
<td>32.78%</td>
<td>66.36%</td>
<td>41.23%</td>
<td>12.14</td>
</tr>
<tr>
<td>60</td>
<td>1500</td>
<td>1.5</td>
<td>34.23%</td>
<td>33.86%</td>
<td>66.43%</td>
<td>40.00%</td>
<td>9.44</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
<td>0.9</td>
<td>41.86%</td>
<td>46.96%</td>
<td>77.79%</td>
<td>50.78%</td>
<td>9.63</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
<td>1.5</td>
<td>41.72%</td>
<td>48.07%</td>
<td>80.21%</td>
<td>51.01%</td>
<td>13.05</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>0.9</td>
<td>40.11%</td>
<td>32.06%</td>
<td>62.94%</td>
<td>43.07%</td>
<td>9.16</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>1.5</td>
<td>38.73%</td>
<td>40.10%</td>
<td>62.26%</td>
<td>44.28%</td>
<td>12.26</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
<td>0.9</td>
<td>32.29%</td>
<td>45.91%</td>
<td>74.00%</td>
<td>43.22%</td>
<td>8.89</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
<td>1.5</td>
<td>29.59%</td>
<td>37.06%</td>
<td>46.49%</td>
<td>34.20%</td>
<td>7.29</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>36.72%</td>
<td>39.71%</td>
<td>67.06%</td>
<td>43.47%</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Reference

CAV Trajectory Optimization

- Signalized Intersections
 - Mixed Traffic (CAVs + Human-driven vehicles (HVS))

Reference
CAV Trajectory Optimization

- Freeway Speed Harmonization

Reference:

Joint Trajectory and Signal Optimization

- Problem setting

Reference:
Joint Trajectory and Signal Optimization

- Signalized intersection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>2000 vph</td>
</tr>
<tr>
<td>λ_2</td>
<td>1500 vph</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>l_1</td>
<td>500 m</td>
</tr>
<tr>
<td>l_2</td>
<td>500 m</td>
</tr>
<tr>
<td>μ</td>
<td>4000 vph</td>
</tr>
<tr>
<td>w</td>
<td>40</td>
</tr>
<tr>
<td>s_0</td>
<td>6 m</td>
</tr>
<tr>
<td>l_C^C</td>
<td>7 m</td>
</tr>
<tr>
<td>L</td>
<td>2.7 s</td>
</tr>
<tr>
<td>τ</td>
<td>0.6 s</td>
</tr>
</tbody>
</table>

Joint Trajectory and Signal Optimization

- Work-zone

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>2000 vph</td>
</tr>
<tr>
<td>λ_2</td>
<td>1500 vph</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>l_1</td>
<td>500 m</td>
</tr>
<tr>
<td>l_2</td>
<td>500 m</td>
</tr>
<tr>
<td>μ</td>
<td>4000 vph</td>
</tr>
<tr>
<td>w</td>
<td>40</td>
</tr>
<tr>
<td>s_0</td>
<td>6 m</td>
</tr>
<tr>
<td>l_C^C</td>
<td>250 m</td>
</tr>
<tr>
<td>L</td>
<td>27 s</td>
</tr>
<tr>
<td>τ</td>
<td>0.6 s</td>
</tr>
</tbody>
</table>
Deep Learning Based Trajectory Control

- Using deep neural networks to design adaptive CAV controllers

Implication to Capacity Analysis & Planning
Trajectory Control → Capacity Analysis

• CAV control → Heterogeneous headways in mixed traffic
 - CAV
 - Human-driven Vehicle (HV)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>0.7 2.4 h (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>0.3 2.0 h (s)</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.5 2.6 h (s)</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.6 2.6 h (s)</td>
</tr>
</tbody>
</table>

Capacity Analysis

• CAV technology uncertainties
 - Will CAV reduce headways?

Google car pulled over for being too slow
Capacity Analysis

- Different technology scenarios

![Diagram showing different technology scenarios with frequency distributions for various scenarios.]

Capacity Analysis

- CAV market penetration rate

![Diagram showing CAV market penetration rate with examples for low and high rates.]

Low CAV market penetration rate

High CAV market penetration rate
Capacity Analysis

- CAV platooning intensity

Low CAV platooning intensity

High CAV platooning intensity

Analytical Capacity Formulation

- Markov chain model

\[t_{11}, h_{11} \]

\[t_{01}, h_{01} \]

\[t_{10}, h_{10} \]

\[t_{00}, h_{00} \]
Analytical Capacity Formulation

• Markov chain model
 ▪ \(P_1 \in [0,1] \): CAV market penetration rate
 ▪ \(O \in [-1,1] \): CAV platooning intensity
 ▪ \(T := \begin{bmatrix} t_{11} & t_{10} \\ t_{01} & t_{00} \end{bmatrix} \)

\[
\begin{align*}
t_{10}(P_1, O) &:= \begin{cases} P_0(1 - O), & O \geq 0; \\
P_0 + O \left(P_0 - \min\{1, P_0\} \right), & O < 0,
\end{cases} \\
t_{11}(P_1, O) &:= 1 - t_{10}(P_1, O), \\
t_{01}(P_1, O) &:= \begin{cases} P_1(1 - O), & O \geq 0; \\
P_1 + O \left(P_1 - \min\{1, P_1\} \right), & O < 0,
\end{cases} \\
t_{00}(P_1, O) &:= 1 - t_{01}(P_1, O).
\end{align*}
\]

Analytical Capacity Formulation

• Approximate capacity
 ▪ \(\hat{c} := \frac{N-1}{\sum_{n=1}^{N-1} E(h_n)} = \frac{N-1}{\sum_{n=1}^{N-1} h_{A_n A_{n+1}}} = \frac{1}{\sum_{s \in S, r \in S} P_3 t_{sr} h_{sr}} \)
 ▪ **Theorem 1:** \(\hat{c} \leq \bar{c} \) for any finite \(N \)
 ▪ **Theorem 2:** When \(O < 1 \), \(\Pr(\hat{c} \to \bar{c} \text{ as } N \to \infty) \)
Capacity analysis

- Numerical analysis

Optimistic Headway

Conservative Headway

Application – Lane Management

- Determine the optimal number of CAV lanes

\[
\hat{c}_A := \frac{1}{\bar{h}_{11}} \\
q_A := \min(P_1D, l_A \hat{c}_A) \\
p_1 := \frac{\max(0, P_1D - l_A \hat{c}_A)}{\max(1, D - q_A)} \\
\hat{c}_{\text{mix}} := \frac{1}{\sum_{s \in S, r \in S} p_s t_{sr} \bar{h}_{sr}} \\
Q := q_A + \min(D - q_A, (L - l_A) \hat{c}_{\text{mix}})
\]

ML : \[Q^* := \max_{l_A} Q(l_A, P_1, D, \alpha) \]
subject to \[l_A \in [0, 1, \ldots, L] \]

Reference:
Field Experiments – Pure HVs

- 15 HVs following tests in Harbin, China (collaborating with Harbin Institute of Technology)

Lead vehicle

Following vehicles
Data Collection on Public Roads

- Video-Based Intelligent Road Traffic Universal Analysis Tool (VIRTUAL) (Provisional Patent #: 62/701,978)

Table 1:

<table>
<thead>
<tr>
<th>Veh ID</th>
<th>Frame ID</th>
<th>x(ft)</th>
<th>y(ft)</th>
<th>Speed(ft/s)</th>
<th>Acceleration(ft/s²)</th>
<th>Lane Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>4</td>
<td>533.02</td>
<td>153.43</td>
<td>59.14</td>
<td>-2.91</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>536.96</td>
<td>149.49</td>
<td>58.94</td>
<td>1.16</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>540.89</td>
<td>145.56</td>
<td>59.02</td>
<td>-3.60</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>544.83</td>
<td>141.62</td>
<td>58.78</td>
<td>-1.13</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>548.75</td>
<td>137.70</td>
<td>58.70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>552.66</td>
<td>133.79</td>
<td>58.70</td>
<td>-2.75</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>556.57</td>
<td>129.88</td>
<td>58.51</td>
<td>-0.85</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>560.47</td>
<td>125.98</td>
<td>58.46</td>
<td>-1.45</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>564.37</td>
<td>122.08</td>
<td>58.36</td>
<td>-1.90</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>568.26</td>
<td>118.19</td>
<td>58.23</td>
<td>-1.28</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>572.14</td>
<td>114.31</td>
<td>58.15</td>
<td>-2.96</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>576.02</td>
<td>110.43</td>
<td>57.95</td>
<td>2.46</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>579.88</td>
<td>106.57</td>
<td>58.11</td>
<td>9.57</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>583.76</td>
<td>102.69</td>
<td>58.75</td>
<td>9.60</td>
<td>0</td>
</tr>
</tbody>
</table>
Fields Experiments – Pure CAVs

- Turner Fairbank Highway Research Center
- Level-1 Automated Cadillac

Field Experiments

- HV following CAV/HV at the 2.4 km test track at Chang’an University, China
- Test different drivers, different CAV speed
Field Experiments

- HV following CAV/HV at the 2.4 km test track at Chang’an University, China
- Test different drivers, different CAV speed

Field Experiments – Mixed Traffic

- Difference between HV → CAV and HV→HV
Acknowledgements

- Students
 - Fang Zhou (Li’s student)
 - Amir Ghiasi (Li’s student)
 - Omar Hussain (Li’s student)
 - Handong Yao (Harbin Institute of Technologies)
 - Zhen Wang (Chang'an University)
- Collaborators
 - Jiaqi Ma (University of Cincinnati)
 - Zhigang Xu (Chang’an University)
 - Jianxun Cui (Harbin Institute of Technologies)
 - Sean Qian (CMU)
- Funding agencies

Thank you!
Q & A?

Xiaopeng (Shaw) Li, Ph.D.
Assistant Professor, Susan A. Bracken Faculty Fellow
Department of Civil and Environmental Engineering
University of South Florida
4202 E. Fowler Avenue, ENG 207
Tampa, FL 33620-5350
E-mail: xiaopengli@usf.edu
Phone: 813-974-0778; Fax: 813-974-2957
Website: http://cee.eng.usf.edu/faculty/xiaopengli/