Bypass Basics:

Considering a Bypass in Your Community

by•pass

/ˈbīpəs/

noun

a road passing around a town or its center to provide an alternative route for through traffic.

- Google Dictionary

Prepared by CUTR for FDOT Systems Planning Office 2014

www.dot.state.fl.us/planning/systems/
Foreword
This paper provides information about the potential impacts of a highway bypass, how those impacts are assessed, and ways to avoid, minimize, or mitigate impacts. It is directed to decision-makers, concerned citizens, and other stakeholders to help them in making informed decisions and in establishing coherent and relevant policies related to potential impacts of proposed bypasses on their community.

This white paper is based on research performed by the Center for Urban Transportation Research (CUTR) at the University of South Florida (USF) for the Florida Department of Transportation (FDOT). Impacts of Bypass Highways on Small- and Medium-Sized Communities in Florida: Knowledge Search and Evaluation of Past Studies, December 2010 contains a detailed review of the existing literature on highway bypass impacts, identifies gaps in knowledge, and presents initial observations and suggestions for a more comprehensive approach to bypass impact evaluation. Impacts of Bypass Highways on Small- and Medium-Sized Communities in Florida: Enhancing Existing Evaluation Methods, December 2011 describes existing methodology for evaluating these impacts and suggests enhancements to many of these methodologies, especially those dealing with sociocultural evaluation.

Disclaimer
The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Florida Department of Transportation or the U.S. Department of Transportation.
Introduction

Highway bypasses are constructed in small- and medium-sized cities in Florida and nationwide to reroute through traffic, particularly trucks, away from central business districts (CBDs) or other locations consistently congested by traffic. The traditional decision-making criteria regarding bypass construction usually focus on redirecting vehicles that are traveling through the area with no intention of stopping, thereby improving regional travel time and mobility (the ability to get from one place to another) and reducing adverse impacts of traffic on communities.

A bypass has the potential to positively or adversely affect the community or district economically, geographically, and aesthetically both along the bypassed route and in the area of the new roadway. For example, by increasing accessibility or ease of access to the surrounding area, highway bypasses can dramatically alter land use and growth patterns. Yet studies of potential bypass impacts tend to focus on evaluating economic impacts to an overall area, without similar attention to potential land-use and livability impacts. This is likely due to the pressure on transportation agencies to demonstrate that a proposed bypass will not adversely impact businesses in these communities. Land use and livability impacts may be of less concern to smaller communities, who often actively seek growth to enhance their tax base or may feel the bypass will improve livability by reducing in-town congestion. These latter issues are, however, also critical to economic development, as well as growth management and sustainability.

This paper provides basic information regarding bypasses and their potential impacts on communities. It offers guidance for decision-makers, concerned citizens, and stakeholders in communities considering a bypass. Information gathered can then be weighed in selecting an alternative and in determining appropriate plans, strategies, and mitigation measures to more comprehensively address the anticipated impacts of the bypass.

Considering a Bypass

Highway bypasses are constructed as relief routes to a main roadway, and are adapted to suit specific travel needs of an area. A standard bypass is “a segment of new highway that reroutes through-traffic around a central business district” and “is linked with the bypassed route at the opposite side of the city” (Helaakoski et al). A bypass can vary from a high speed roadway with limited traffic signals (functionally classified as an arterial) to an expressway designed for high speed travel and no traffic signals (functionally classified as a limited access highway). Most bypasses are built to design standards that allow traffic
to flow at high speeds and can range in length from a few hundred yards to several miles. The length of the bypass depends on the size of the community being bypassed, the availability of existing roadways where the bypass will reconnect to the main road, and socioeconomic and environmental concerns.

Certain Florida Department of Transportation (FDOT) plans and policies may lead to the consideration of bypass construction. Many of the state’s transportation dollars are focused on the Strategic Intermodal System known as the SIS. The SIS is made up of roads, ports, airports, rail corridors, transit terminals that are critical to traveling throughout the state and, therefore, to the state’s economic vitality. The SIS Strategic Plan “sets policies to guide decisions about which facilities are designated as part of the SIS, where future SIS investments should occur, and how to set priorities among these investments given limited funding” (Florida Department of Transportation).

Local government officials are often very interested in having state highways that run through their communities designated as part of the SIS to ensure federal and state funding is available for improvements on those roadways. To be designated a SIS highway corridor, a roadway must meet minimum size criteria as well as community and environment criteria (see www.dot.state.fl.us/planning/sis for the specific criteria). Emerging SIS facilities are those that are anticipated to meet SIS criteria within a designated time period. The criteria for highways address vehicle volume, truck percentage of traffic, and connectivity of segments between SIS corridors. All SIS roadways must currently meet or be brought up to established design and level of service (LOS) standards. Roadway level of service defines how well traffic is moving on a highway and is a primary consideration in whether a project such as a bypass will be funded. If the amount of existing or anticipated future traffic is expected to result in congestion and a decrease in travel time, a bypass may be considered.

FDOT considers community livability and environmental quality for SIS facilities. (Florida Department of Transportation). Notably, requirements state the following:

Corridors and connectors should be designated, designed, and constructed in such a way as to avoid or minimize negative impacts and preserve the function and character of local communities, using processes such as the Efficient Transportation Decision-Making process as a tool beginning in early planning phases of a project.
SIS corridors serving high volumes of freight traffic should consist of facility types designed to accommodate freight movement, and should not pass through residential and commercial areas with high levels of pedestrian activity or other activities sensitive to the noise, vibration, emissions, and safety impacts associated with freight movement. (emphasis added)

Except where supported by local community plans or necessary for connections to transit hubs, through passenger trips should be accommodated by major arterials and limited access facilities, and should be discouraged from using streets primarily intended to serve local vehicular, bicycle and pedestrian traffic. (emphasis added)

Where the SIS designation process identifies an existing transportation connector between two SIS facilities that does not conform to this criterion, the process shall identify the nonconformity as a gap in the SIS to be filled by a connector conforming to the criteria.

This policy implies that due to the nature of traffic on a state highway, including freight and other vehicles passing through, a bypass should be considered where a SIS highway is also the main street of a community. Many Florida main streets have been designated a SIS or Emerging SIS highway. As population and business growth occurs, the amount of traffic, particularly truck traffic, also increases on the roadway. Heavy traffic conflicts with the residential, commercial, and pedestrian activity of the community’s main street, adversely affecting community character, aesthetics, and quality of life. Adverse effects include fumes and vibrations from trucks and traffic noise resulting in an inability for pedestrians to easily cross the street and an uninviting atmosphere for active street life including outdoor cafes. In such cases, widening the roadway may increase adverse impacts on the community making a bypass an attractive alternative.

Roadway design and level of service standards can also influence the decision to build a bypass. Roads that are part of the SIS must be designed to accommodate vehicles traveling 50 mph in urban areas and 65 mph in rural areas. Small communities are considered rural and, therefore, roads are designed to allow travel speeds up to 65 mph. These wide, high speed roads through town create a dangerous environment for bicycle and pedestrian activity thereby increasing the appeal of a bypass.

In addition, the community may have policies that indirectly support a bypass. For example, a policy or community vision may limit the number of travel lanes
on roadways in the community. The community may recognize the need to accommodate faster evacuation in the event of a hurricane or other emergency and include policies supporting such roadway projects within local government or regional.

Determining Impacts

A highway bypass may have both direct and indirect impacts on the community. Direct impacts are general and immediate and include conversion of productive land and/or the removal of existing buildings to accommodate the roadway, as well as changes to the overall character of the affected area due to construction. Indirect impacts tend to occur over a long period of time and can also be cumulative, that is, several small impacts may add up to a greater impact. Some indirect impacts may include changes in land use, livability, community character, and local mobility. For example, changes may occur in the overall development and growth pattern of an area.

Construction of a roadway bypass provides improved accessibility (ease of getting to and from an area in terms of time and cost) to the land surrounding it. Improved accessibility, particularly when paired with the provision of urban services and land access, generally increases development pressure in an area and can lead to sprawl. In addition, small- to medium-sized communities near growing metropolitan areas are more likely to experience such development pressure. The likelihood of growth pressure is also dependent on the local government comprehensive plan and the scale of development permitted near the bypass. However, comprehensive plans and other growth management policies can and often do change once vacant land is made more accessible due to market demand and political influences.

Additionally, indirect impacts may affect land use, livability, community character, and local mobility surrounding the bypassed roadway. Often, the roadway that is bypassed has undergone piecemeal changes in years leading up to bypass construction that were designed to maximize the number of motorized vehicles that could travel on the road as well as to accommodate large freight vehicles. At the same time, the roadway corridor may have lost features that contribute to the community appeal – such as street trees,
sidewalks, and on-street parking as well as historic and civic structures. After bypass construction, the bypassed roadway is likely to have excess capacity for vehicles, a wide crossway that is unfriendly to pedestrians and bicyclists, and a vacant appearance.

A bypass, particularly one that provides access to undeveloped land, can affect the rate of growth and the development patterns of an area as illustrated by the traffic engineering and land use planning cycle (see Figure 1). There may be a shift in the location where development occurs. For example, developers may seek to build intense commercial development around new highway interchanges. Strip commercial and industrial uses may be built on major roads between the developed area and interchanges with the bypass, and developers of low-density residential homes may build subdivisions on land made more accessible by the bypass. Big box retailers may be attracted to locations along the bypass. As a result of the redistribution of development beyond the existing community, economic activity shifts as well.

Figure 1. Traffic engineering and land use planning cycle.
Source: Unknown
Sprawling development causes local trips to use the bypass between interchanges due to a lack of corresponding local roadway development. Over time, mobility is impacted as travel time savings initially sought through construction of the bypass are diminished. In addition, the community will likely experience pressure to build local roads to improve connectivity, even as new development may prevent viable alternatives.

FDOT Actions

FDOT examines potential direct and indirect impacts of a proposed transportation project such as a bypass. Impacts are studied during both the planning phase and prior to the project development and environment (PD&E) phase of a project. This is accomplished through FDOT’s Efficient Transportation Decision Making (ETDM) process. The ETDM website (www.etdmpub.fla-etat.org) contains a detailed overview of the process as well as guidance regarding the Environmental Screening Tool (EST, an Internet-accessible interactive database and mapping application). Local governments, interested citizens, and other stakeholders can and should participate throughout the ETDM process.

During the planning phase, a project is being considered for inclusion in a long-range transportation plan such as the Strategic Intermodal System (SIS) Plan or an applicable metropolitan planning organization’s (MPO’s) long-range transportation plan. A number of possible locations for the proposed bypass are evaluated during the ETDM process and the PD&E phase. Depending on the size and complexity of the project, the PD&E phase may take several years to complete.

Stakeholders, including MPOs, county and municipal governments, federal and state agencies, Native American tribes, and the public may provide input regarding a project’s potential effects on the natural, physical, cultural, and community resources. Comments received from these stakeholders “help to determine the feasibility of a proposed project; focus the issues to be addressed during the PD&E phase; allow for early identification of potential [impact] avoidance, minimization, and mitigation opportunities; and create products that may be used in the PD&E phase to promote efficiency and consistency during project development” (Florida Department of Transportation).

1. **ETDM Manual.** March 2006. etdmpub.fla-etat.org/est/#

The ETDM process was developed by FDOT in the early 2000s to more efficiently accomplish the requirements of National Environmental Policy Act (NEPA) and related Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act.
A sociocultural effects (SCE) evaluation is an integral part of the ETDM process and FDOT must follow specific procedures in conducting the evaluation (see sidebar). Issues considered as part of the sociocultural effects evaluation are categorized as social, economic, land use, mobility, aesthetics, and relocation as detailed in Table 1. According to the ETDM Manual, comments gathered during the planning screen are used to guide PD&E efforts. The screening effort accomplishes the following (Florida Department of Transportation):

- Ensures that community issues are identified and potential project effects are considered and addressed in the decision-making process;
- Avoids, minimizes, and/or mitigates, where feasible, adverse community effects;
- Considers environmental and community effects from the earliest stages of planning and project development;
- Enhances participation and consultation of communities affected by proposed projects throughout the project development process; and
- Identifies conceptual design issues to promote livable communities.

Table 1. Sociocultural Effects Issues

<table>
<thead>
<tr>
<th>SOCIAL</th>
<th>COMMERCIAL</th>
<th>LAND USE</th>
<th>MOBILITY</th>
<th>AESTHETICS</th>
<th>RELOCATION POTENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>Business and Employment</td>
<td>Land Use/Urban Form</td>
<td>Modal Choices</td>
<td>Noise/Vibration</td>
<td>Residential</td>
</tr>
<tr>
<td>Community Goals</td>
<td>Tax Base</td>
<td>Local Plan Consistency</td>
<td>Pedestrian</td>
<td>Non-Residential</td>
<td>Non-Residential</td>
</tr>
<tr>
<td>Community Cohesion</td>
<td>Traffic Patterns</td>
<td>Focal Points</td>
<td>Bicycle</td>
<td>Public Facilities</td>
<td>Public Facilities</td>
</tr>
<tr>
<td>Quality of Life</td>
<td>Business Access</td>
<td>Open Space</td>
<td>Transit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety/Emergency Response</td>
<td>Special Needs Patrons</td>
<td>Sprawl</td>
<td>Connectivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Community Designations</td>
<td></td>
<td></td>
<td>Traffic Circulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Local Government Actions

Direct and indirect bypass impacts can be avoided, minimized, mitigated, or enhanced through specific planning efforts. However, planning efforts to address all impacts, particularly land use impacts, cannot be initiated by FDOT. Planning must be initiated and directed by the local government. FDOT may lend technical assistance and resources to the effort, particularly at the local government’s request. Planning efforts must be carefully guided to ensure the new bypass, the bypassed road, and indirect land use changes are compatible with the community and the community’s vision. Development and
Development and implementation of a mobility plan is recommended for local governments when a bypass becomes the preferred transportation alternative.

Develop and implement a mobility plan

A mobility plan consists of a map as well as written policies and strategies to guide land use and projects related to the transportation system. The map identifies land uses, roads, transit routes, bike lanes, sidewalks, and other transportation-related facilities. The plan addresses pedestrian, transit, bicycling, and automobile, as well as rail (freight and passenger), air, and water modes of transportation. It lays out supporting land use policies and specific transportation policies, programs, and projects to accomplish the community’s vision for mobility.

Development and implementation of a mobility plan by a local government can enhance the benefits of a new bypass, as well as minimize or mitigate potentially negative impacts. Similarly, the mobility plan can help to mitigate potential impacts to the existing roadway – even if a bypass alternative is not chosen. In some cases, the number of vehicles traveling on highways that are main streets could be reduced by transportation projects on other streets in the network that are not part of the SIS or the State Highway System. The mobility plan can identify such projects.

Focusing on the mobility of people and goods involves placing less emphasis on relieving auto congestion in urban core areas or activity centers (often a sign of vitality) and more emphasis on the availability of a variety of transportation modes such as transit, pedestrian, and bicycle facilities in those areas, improving walkability, and promoting a diverse and compatible mix of land uses in close proximity. Dense, connected streets with narrower cross-sections and wider, continuous sidewalks are among the determinants of walkability, and also help to make activity centers functional, vibrant, and appealing.

Land Use

Future land use concepts in the mobility plan should identify areas where specific land use activities are expected to occur, such as freight activity versus neighborhood retail and services. This guides future street design and the application of context sensitive solutions on major corridors, as well as planning and investment decisions relative to goods movement, public transportation, and pedestrian/bicycle services and facilities. Local street network density and
connectivity is a primary determinant of the quality of the multimodal environment. People can walk and bike more easily where streets provide relatively short blocks and multiple connections to shops or services from the surrounding residential areas.

Likely land use changes resulting from construction of a limited access bypass include:

- intensive development near interchanges,
- strip commercial and industrial uses on major roadways between the developed area and interchanges with the bypass, and
- low-density residential development on nearby land made more accessible by the bypass.

The mobility plan should address appropriate development location, density, and intensity. For example, local governments should consider the location of major activity centers in relation to major roadways with the primary function of serving long distance, high speed travel (see Figure 2). If not properly located, activity centers can lead to hazardous conflicts between local traffic circulation and through movement. Major roadways can also have a barrier effect on pedestrian activity. Site design guidance should consider all modes of transportation and provide for supporting networks for activity centers to maximize internal circulation, support transit service, and minimize traffic conflicts on major roadways. Generally, a minimum of two safe pedestrian crossings per mile is recommended with more in activity centers, such as a downtown area.

![Diagram](image)

Figure 2. Locating activity centers along major arterial corridors.

Source: Florida Multimodal Transportation Districts and Multimodal Areawide Quality of Service Handbook (Florida Department of Transportation).

As a result of new development, great potential exists for local trips on the bypass between interchanges where local streets do not provide a direct connection. Over time, travel time savings initially sought through construction of the bypass may be lost. Interchange land use plans should guide land use and

Context sensitive solutions involve applying infrastructure and features to support the type of travel that is desired at specific locations. This may include more sidewalks and pedestrian crosswalks where there are pedestrians or more on-street parking where applicable.
network development around interchanges to protect the capacity of major roadways. Local governments can apply additional strategies through the land development process to guide how vehicle traffic accesses land uses and circulates through an activity center.

Network and Connectivity

Planning the desired street, bicycle, and pedestrian networks is an important part of the mobility plan. The community can identify gaps in the networks where the existing local street system does not provide land access or adequate circulation throughout the community and off of the main roadway. Projects to fill these gaps can be made part of the plan. New streets are most effective in supporting local circulation when a grid or modified grid street pattern is followed.

Figure 3 illustrates what a street network might look like including recommended distance between roadway types. Note the service road concept shown parallel to the major arterial. Such a road provides additional access to commercial land uses, which reduces the need to access all uses from the major roadway. The result is greater ease and safety of vehicle movement on the arterial. The overall grid structure allows several different routes from one point to another, which lowers the traffic volume on any single roadway and provides alternatives when a road is blocked by a crash or other event. In addition, one-way streets should be avoided in favor of two-way streets that support circulation and activity. Careful management of major arterial access can avoid the need for “one-way pairs” adjacent to the arterial to serve as reliever routes through neighborhoods.

![Figure 3. Generalized network concept.](image)

Source: Second Edition of the TRB Access Management Manual (Williams, Stover and Dixon)
Access Management

The impact of a bypass on land use and the local economy can be minimized by controlling access to the bypass route and by managing access on the bypassed roadway. The most effective means to prevent sprawl development along a bypass is by incorporating interchanges only where the new roadway exits and enters the bypassed roadway, with no other access to the bypass permitted. Construction of the bypass in this manner will not interfere with existing local travel or attract development to outlying areas. Development may intensify along the bypassed route in the areas leading to and surrounding each connection with the bypass. The mobility plan should specifically address land use, access to land uses, and traffic circulation in these locations.

A less restrictive approach is to provide interchanges at crossroads with major roadways and, of course, connection to the bypassed roadway. Development pressure will inevitably occur near the interchanges and is likely in areas between the community and the bypass. FDOT will determine the appropriate access control to be established on a bypass that is part of the Strategic Intermodal System.

FDOT and local governments may work together to determine access management measures for the bypassed roadway. Access management involves the coordinated planning, regulation, and design of access between roadways and land development. Limiting access along major roadway corridors reduces traffic conflicts (points where crashes are most likely to occur) and flow interruptions, while improving safety for drivers, pedestrians, and bicyclists. The mobility planning effort should include evaluating roadway design and access characteristics, and proposing changes that maintain reasonable access to property, while improving the safety and operation of major roadways. Such changes may involve:

- medians or median opening closures,
- signal location and spacing,
- auxiliary lanes,
- additional right-of-way,
- changes to site access and circulation design,
- changes to the supporting roadway network, and
- projects involving access for non-automobile transportation modes (e.g. bus pullouts, transitions for special use transit lanes or bus rapid transit, pedestrian crossing treatments).

“The purpose of access management is to provide vehicular access to land development in a manner that preserves the safety and efficiency of the transportation system.”

Management of both the bypass and the bypassed roadway will provide lasting mobility benefits to the community and the State. Figure 4 illustrates how mobility planning for a bypass route in North Carolina limited direct access to the bypass, yet planned for improved access and mobility throughout the area between the bypass and the bypassed route. When the US 311 Bypass alignment in High Point, North Carolina was placed parallel to Brentwood Drive, enough distance was left for development to occur and thrive between the two roads. Notable features included:

- orientation of development toward the local street, not the US 311 Bypass,
- depth of parcels between two roads suitable for viable development, and
- planned streetscape improvements (such as street trees, wider sidewalks, etc.) to create a safer, more comfortable pedestrian environment.

Figure 4. Corridor redevelopment along North Carolina US 311 Bypass.

Changes to the Bypassed Road
A roadway that serves as a main street has often undergone changes over time to maximize the capacity of the road and to accommodate large trucks. Such incremental changes may have robbed the corridor of its community character—such as natural and cultural features ranging from street trees to historic civic
structures. Because most available space was used for traffic lanes, the roadway corridor is likely unfriendly to pedestrians and bicyclists, with frequent driveways, no bike lanes, and narrow sidewalks. After construction of a bypass, the bypassed roadway is likely to have less traffic and to be out of scale with the desired community character.

Local governments should work with stakeholders and partners to plan for improvements to the roadway, bicycle, and pedestrian networks that will enhance local mobility, community character, and livability on the bypassed corridor. Such improvements may be shown in an illustration of the community’s vision as in Figure 5. Attention should be paid to details and urban infrastructure that support community livability including buildings facing the sidewalk, crosswalks, shade trees along sidewalks, bike paths and parking, transit stops (where applicable), street lighting, on-street parking, and ample density and intensity of land uses to support a vibrant community.

A road diet can be applied to “rightsize” streets to more appropriately fit their context. A road diet reduces the number of automobile traffic lanes, replacing them with any combination of landscaping treatments, wider sidewalks, bicycle lanes, on-street parking, and so on. By removing travel lanes and providing enhancements to non-automobile travel, a redesigned street supports local mobility as well as community character and livability. Results include slower
traffic, fewer crashes, and increased bicycle and pedestrian safety. Figure 6 illustrates before and after photographs of a road diet implemented on Martin Luther King Avenue in Lakeland, Florida. Since the road diet, the number of crashes declined and landscaping improved the appearance of the neighborhood.

![Figure 6. Before (2003) and after (2006) road diet in Lakeland, Florida. Source: City of Lakeland](image)

The redesign of Clematis Street in West Palm Beach, Florida changed the downtown from being a place only for commuters to one that attracts shoppers, families, and tourists (Schlossberg, Rowell and Amos). The street was converted from a one-way to a two-way street with wide sidewalks, landscaping, shade trees, and street furniture that contributed to a safer and more comfortable pedestrian environment. Upon completion of this project, major private investment began to occur resulting in a decrease in retail vacancies and a decline in crime. The success of Clematis Street led to the redesign of connecting streets and continued investment in Downtown West Palm Beach.

Installation of roundabouts is another viable strategy to keep traffic moving and allow for a more aesthetically-pleasing and pedestrian-friendly environment. Roundabouts also increase safety by reducing vehicle conflicts by allowing traffic to continue moving, they also reduce delay and emissions, which increase as vehicles stop and start.

All strategies chosen by the local government to address land use and transportation issues within the community should be addressed clearly in the mobility plan and be supported by intergovernmental agreements between FDOT and impacted communities. Upon completion, the mobility plan should be adopted into local government comprehensive plans and other applicable local and regional plans to guide land use and transportation facility development.

In sum, local governments should work with stakeholders and partners to develop a mobility plan addressing:
• land use between the community and the bypass and at least one mile beyond the bypass;
• both land use and access around interchanges, taking care to avoid access points near interchange ramps;
• both land use and access where the bypass meets the existing roadway;
• corridor access management strategies along roadways between the community and the bypass;
• land use and corridor management strategies along the bypassed roadway;
• transportation network improvements to improve local mobility and connect outlying transportation facilities in an effort to minimize the use of the bypass for local traffic; and
• urban infrastructure, such as street trees, lighting, and on-street parking.

Maintaining economic viability of bypassed area
Small- and medium-sized communities often welcome a bypass to minimize through traffic, especially freight, as well as to encourage growth. However, the economy of the bypassed area will likely suffer without a well-developed plan to ensure its continued viability. Local businesses dependent on through traffic may find the need to close or move to a location along the bypass. A downtown development plan will support the long-term viability of the downtown.

Key factors to address in mobility planning for this area include:

• Signage and advertising on the bypass directing travelers to the downtown or bypassed area;
• Development plan or “main street” program including incentives for infill development;
• Pedestrian, bicycle, and transit facilities and amenities;
• Community character, including the addition of street trees, street furniture, and gathering places;
• Control of traffic speed and minimizing pedestrian crossing distances; and
• Infrastructure maintenance.

Adequate signage and advertising on the bypass is one of the best ways to draw the attention of travelers that may have an interest in stopping in the bypassed town center. With proper signage, travelers can decide whether or not to drive into the town center for shopping, restaurants, or other activities and services the downtown has to offer. While signage and advertising will bring more users
to the bypassed route and help support the local economy, it will not attract enough traffic to create significant congestion on the bypassed route.

A main street program includes incentives for development and promotes streetscape enhancements that will generate economic activity. Developing the downtown to an optimal density and intensity will create an environment that supports walking, bicycling, and transit use. In addition, the provision of pedestrian, bicycle, and transit amenities are important to creating a sense of place in the town center. Amenities may include bike racks, wide sidewalks, benches, shade, and covered transit stops that will encourage these modes of transportation by providing a user-friendly experience.

Efforts to create, promote, and emphasize community character are important when planning for mobility. The use of context-sensitive design and complete streets strategies and policies can support livability along roadways through town centers. Strategies such as shade trees, street furniture, short pedestrian crossing distances, and traffic calming can create lively public spaces and should be complimented with nearby locations for public gatherings.

Funding sources and strategies should be identified for reconstruction and maintenance of the bypassed route during the mobility planning process. When a community is bypassed, the bypassed route will likely need reconstruction, especially if a road diet is chosen.
Resources:

Guide for Analysis of Corridor Management Policies and Practices, Center for Urban Transportation Research, for the Florida Department of Transportation, Tallahassee, FL (2007). Includes a work plan for assessing local government land development and access management practices and addresses how to prepare a conceptual plan for implementing corridor management at the local level.

Analysis of Corridor Management Practices on Selected Critical SIS Facilities, Center for Urban Transportation Research, for the Florida Department of Transportation, Tallahassee, FL (2007). Investigates corridor management practices of local governments and coordination efforts between local governments and the Florida Department of Transportation on the selected Strategic Intermodal Systems facilities. Includes a detailed analysis of current planning and development practices, identifies issues in current practice, and recommends corridor management strategies and best practices.

Main Street…when a highway runs through it: A Handbook for Oregon Communities, Transportation and Growth Management, a joint program of the Oregon Department of Transportation and the Oregon Department of Land Conservation and Development. November 1999. Accessed June 20, 2011. Discusses typical issues of speed and livability and how to address them, specific measures to take, financing ideas, and offers examples. This guide does recognize that some conditions warrant a bypass, but stresses that comprehensive knowledge of its potential impacts are key to the success of the bypass as well as the bypassed route.

Road Diet Handbook: Setting Trends for Livable Streets, Rosales, J., Parsons Brinckerhoff (2009). This handbook is a comprehensive guide for decision-making on the applicability of road diets and as a guidebook on the implementation of road diets. The handbook addresses safety, traffic operations, and livability impacts and provides design guidelines for implementing road diet projects and optional design enhancements to consider that complement road diet projects.

Multimodal Transportation Best Practices and Model Element, Center for Urban Transportation Research, prepared for the Florida Department of Transportation, (2014). This document provides model multimodal transportation elements that can serve as guides for Florida local governments when updating their local government comprehensive plans.
References

Florida Department of Transportation. "Adopted SIS Criteria and Thresholds." Adopted 07/20/08.

