INTEGRATED MODELING OF HIGH PERFORMANCE PASSENGER AND FREIGHT TRAIN OPERATION PLANNING ON SHARED USE RAIL CORRIDORS: A FOCUS ON THE US CONTEXT

Dr. Bo Zou
University of Illinois at Chicago

CUTR Webcast Series
October 29, 2015

Project managed by

UTC

- Dedicated to innovative transportation research and education
- Part of the UIC College of Urban Planning & Public Affairs
- Established in 1979
- Promote livable communities
Acknowledgement

This research was partially supported by the Illinois Department of Transportation through the Metropolitan Transportation Support Initiative (METSI)

Today’s Webcast

- Background
- Literature review
- Hypergraphs
- The train schedule model
 - Modeling approach
 - Passenger train scheduling
 - Freight train scheduling
- Solution approach
- Numerical analysis
- Summary and conclusion
Background: Growth in U.S. Rail Service

• Passenger rail resurgence in the U.S.
• High performance rail systems (HSR and HrSR services)
• Midwest: Existing single track lines are being upgraded to accommodate trains running at a maximum speed of 110 mph

Background: Amtrak Ridership Soars

[Graph showing Amtrak ridership over fiscal years with a significant increase from 2011 to 2015]
Background: HSR in Illinois

- Illinois HSR: Chicago-St. Louis (current phase)
 - Single track (with sidings)
 - Shared passenger and freight use
 - High speed passenger trains operating at 110 mph

Source: IDOT (2014)

Background: Focus of Research

- Non-trivial delays to passenger and freight trains
- Interactions between passenger and freight operations
- This research develops a strategic level schedule planning model for mixed train operations on single-track, shared-use passenger and freight corridors
Literature review: Three approaches

• Three approaches in train scheduling: analytical, simulation, and optimization

<table>
<thead>
<tr>
<th>Authors</th>
<th>Objective</th>
<th>Modeling priority</th>
<th>Discrete time</th>
<th>Model structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brännlund et al., 1998</td>
<td>Min schedule deviation</td>
<td>Y</td>
<td>Y</td>
<td>ILP</td>
</tr>
<tr>
<td>Oliveira and Smith, 2000</td>
<td>Min schedule deviation</td>
<td>N</td>
<td>Y</td>
<td>---</td>
</tr>
<tr>
<td>Caprara et al., 2002</td>
<td>Min schedule deviation</td>
<td>N</td>
<td>Y</td>
<td>ILP</td>
</tr>
<tr>
<td>Caprara et al., 2006</td>
<td>Min schedule deviation</td>
<td>Y</td>
<td>Y</td>
<td>ILP</td>
</tr>
<tr>
<td>Canca et al., 2011</td>
<td>Min passengers’ waiting time</td>
<td>N</td>
<td>Y</td>
<td>INLP</td>
</tr>
<tr>
<td>Harrod, 2011</td>
<td>Max total utility of trains</td>
<td>Y</td>
<td>Y</td>
<td>ILP</td>
</tr>
<tr>
<td>Liu and Kozan, 2011</td>
<td>Min schedule makespan</td>
<td>Y</td>
<td>N</td>
<td>MILP</td>
</tr>
</tbody>
</table>

• Discrete time modeling is dominant

• Most of the studies use an “ideal timetable”

Literature review: “Ideal schedule”

• Question: What is an “ideal schedule”?

• Very limited efforts in obtaining ideal train schedules

• Traveler schedule convenience: An important factor in designing passenger trains schedules

• A measure of inconvenience of schedule to passengers: Schedule delay
Definition: Schedule delay

The difference between one's desired departure time and the actual departure time.

![Bar chart showing the number of passengers at different times of the day.]

Literature review: Schedule Delay

- **Schedule delay** is absent in passenger rail schedule planning.
- Binary integer programming is the prevailing choice for modeling.
- Commonly used segment (block) occupancy models are less capable to capture transitions.
- The emerging **hypergraph** based scheduling approach explicitly addresses **train transitional status**.
Hypergraphs: The Model

Deficiency of the traditional segment occupancy scheduling model

- Commonly used capacity constraints are met
- Traditional segment (block) occupancy scheduling models **cannot** deal with conflicts during train transitions between segments
- Transition at the end of the \((t + 1)\)th period on the boundary of segments 3 and 4 is violated

![Diagram](image1.png)

Each single segment is occupied by one train

Hypergraphs: Harrod

Using Hypergraphs in train schedule modeling (Harrod, 2011)

- Each train movement is represented by a hyperarc
- A chain of consecutive hyperarcs form a train path

![Diagram](image2.png)

- Segment occupancy nodes \((1,t)\) and \((2,t+1)\) and a transition node \((1,t)\)
Hypergraphs: Subtrain

Definition: subtrain

- Each sub-journey is conducted by a subtrain
- $\tau_{nw} (n = 1, \ldots, N; w \in W)$: the n^{th} subtrain travelling from the origin segment of station pair w to the destination segment of station pair w

Hypergraphs: Linkage

Linkage between subtrains

Linkage between two subtrains is established using a binary variable
Hypergraphs: Variables

Decision variables

Primary decision variable:
\[x_{t,j,u,v}^r = \begin{cases}
1 & \text{if subtrain } r \text{ occupies segment } i \text{ in time interval } [u, v) \text{ and moves to segment } j \in \{B \mid j \neq e_r \} \text{ at } v \\
0 & \text{Otherwise}
\end{cases} \]

Secondary decision variable:
\[y_{t,t',i}^r = \begin{cases}
1 & \text{if subtrain } r \text{ arrives at an artificial sink node } e_r^T \text{ at } t \text{ and its continuation } i^r \text{ resumes the journey from the origin node } o_i^r \text{ at time } t' \\
0 & \text{Otherwise}
\end{cases} \]

Modeling approach

• We approach the train scheduling problem from a central planner’s perspective
• By Public Law 110-432 (110 Congress, 2008), Amtrak trains have priority over all freight trains
• A two-level sequential modeling approach
 – Upper level: passenger train scheduling
 – Lower level: freight train scheduling
Passenger train scheduling

- Passenger-side costs
 - Train operating expenses
 - Passenger in-vehicle travel time cost
 - Passenger schedule delay cost
- We intend to design a schedule that permits two opposing passenger trains to pass without any full stop (flying meet).

Optimal train schedule:
- Minimum passenger schedule delay

A function of passenger demand profile

Passenger demand profile

- Each O-D pair has a passenger demand profile (Preferred Departure Time)
- Passengers are served by a predetermined number of trains
Passenger train scheduling

Objective function

\[\begin{align*}
\text{Min} & \quad \sum_{\substack{w \in W, (u,v) \in \psi^p_w}} \left(c_d^{L,w} r_{u,v}^w + c_d^{R,w} s_{u,v}^w \right) x_{o^w,j,u,v}^w \\
& + \sum_{\substack{w \in W, n=2,3,\ldots,N-1, \psi^p_{w,n}}} \left(c_d^{L,w} r_{u,v}^w + c_d^{R,w} s_{u,v}^w \right) x_{o^w,j,u,v}^w \\
& + \sum_{\substack{w \in W, (u,v) \in \psi^p_w, (u,v) \neq (u',v')}} \left(c_d^{L,w} r_{u,v}^w + c_d^{R,w} s_{u,v}^w \right) x_{o^w,j,u,v}^w \\
& + \sum_{\substack{(r,t) \in E^p \setminus (0,t) \in E^p}} d^r (t - (l_{\text{min}} + 1)) y_{t,t}^r.
\end{align*} \]

Schedule delay for passengers who take the **first** subtrain travelling between each station pair

Schedule delay for passengers who take an **intermediate** subtrain travelling between each station pair

Schedule delay for passengers who take the **last** subtrain travelling between each station pair

Penalty for staying longer than scheduled stop time at stations

Each term has to be calculated at preprocessing stage

Passenger train scheduling

Objective function

Maintaining the order among subtrains

- Maintaining the order among subtrains essentially ensures maintaining the order among physical trains

- Penalize any combination of the starting arcs of two consecutive subtrains which violates the order of subtrains by a large number \(M \)

- We add the following term to the objective function

\[\sum_{\substack{w \in W, (u,v) \in \psi^p_w, (u,v) \neq (u',v')}} M \times x_{o^w,j,u',v'}^w \times x_{o^w,j,u,v}^w \]
Constraints: Eight Identified

• Unique departure from origin
• Unique sinking at the destination
• Flow conservation
• Linkage between trains
• Binary variables
• Segment capacity constraint
• Segment transition constraint
• Headway management

Freight train scheduling

• Freight trains are inserted among the fixed schedule of passenger trains
• A freight train is dispatched whenever the train receives enough load
• Freight train scheduling is less precise and stringent
• Freight side costs
 – Foregone demand cost (loss of operating revenue)
 – Departure delay cost
 – En-route delay cost

Optimal train schedule:
Minimum total freight cost
Freight train scheduling

Objective function

\[\text{Min } \sum_{r \in \mathcal{R}} \left(c_r^e (u - EADT^r) - c_r^f x_{o,w,j,u,v} + \sum_{r \in \mathcal{R}} c_r^i x_{i,j,u,v} \right) \]

Departure delay cost

En-route delay cost

Foregone demand cost

Solution approach: QIP

- The top-level problem is a Quadratic Integer Programming (QIP) problem
- QIPs are in general NP-hard; therefore, solving a large problem within a reasonable time is difficult
- Remedies:
 - Dropping the term involving big \(M \)
 - Linearizing the quadratic objective function
 - Further simplifying the problem
Solution approach: Dropping M

Dropping the term involving big M
- Large differences in values of different terms in the objective function leading to large round-off errors
- Instead, we suggest the following constraint:
 $$\sum_{(o^w,j,u',v') \in \Psi^{p,r^w_n}} u' \cdot x_{o^w,j,u',v'}^{r^w_{n-1}} \leq \sum_{(o^w,j,u,v) \in \Psi^{p,r^w_n}} u \cdot x_{o^w,j,u,v}^{r^w_n}$$

Starting arc of a train is no earlier than the starting arc of its preceding train
- Avoids round-off errors and introduces new cuts which help improve computational efficiency

Solution approach: Binary variable

Linearizing the quadratic objective function
- Replace each quadratic term with a new binary variable
 $$z_{u',u}^{r^w_{n-1},r^w_n} = x_{o^w,j,u',v'}^{r^w_{n-1}} \cdot x_{o^w,j,u,v}^{r^w_n}$$
 for all $w \in W, \forall n = 2,3,\ldots,N, (u',u) | u' < u, (o^w,j,u',v') \in \Psi^{p,r^w_n}, (o^w,j,u,v) \in \Psi^{p,r^w_n}$
- For each new variable, three inequality constraints need to be added
 $$z_{u',u}^{r^w_{n-1},r^w_n} \leq x_{o^w,j,u',v'}^{r^w_{n-1}}$$
 $$z_{u',u}^{r^w_{n-1},r^w_n} \leq x_{o^w,j,u,v}^{r^w_n}$$
 $$x_{o^w,j,u',v'}^{r^w_n} + x_{o^w,j,u,v}^{r^w_n} \leq 1 + z_{u',u}^{r^w_{n-1},r^w_n}$$
 where z is less than either of the associated x variable values; z equals one only when both x's are equal to one
Solution approach: New constraint

Further simplifying the problem

• Replace the last inequality constraint in the previous slide by

\[
\sum_{(u',u) \mid u' < u} \sum_{(w,j,u',v')} \Psi_{p,r_{n-1}} z_{u',u}^{w} = 1
\]

\[
\forall w \in W, \forall n = 2,3, ..., N
\]

- Each subtrain has a unique departure. Therefore only one combination of starting arcs of two consecutive subtrains is equal to one.

- The new constraint set represents the same characteristics with much fewer constraints

Numerical analysis

• A small problem
• Impact of speed heterogeneity
• A larger problem
Numerical analysis
A small problem – Part 1

• Set up:
 – 11 segments: 6 track segments and 5 sidings
 – 2 O-D pairs (one in each direction)
 – Each track segment 18 miles long
 – Sidings evenly distributed along the corridor, each
 2 miles long
 – Total corridor length: 120 miles

Numerical analysis:
A small problem – Part 2

• Set up (cont’d)
 – Operating speed
 • Freight trains: 60 mph
 • Passenger trains: 120 mph
 – Consider daily service frequency of 1-6 trains
 – Elastic passenger demand (elasticity: 0.4, based
 on Adler et al. (2010))
A small problem: Results
Passenger schedule delay cost

Marginal schedule delay cost reduction diminishes with passenger train frequency

A small problem: Results
Freight side costs

- The total cost increases with passenger train frequency
- Departure delay cost is relatively stable across all the six scenarios
- En-route delay cost has an increasing trend
- Foregone demand becomes the most important cost component when more than three passenger trains are scheduled
Impact of speed heterogeneity

Setup:

• Passenger train speed: 120 mph
• Freight train speed: 12 mph-120 mph

Impact of speed heterogeneity
Total freight cost

• Greater speed heterogeneity leads to higher freight side cost
• Sensitivities of freight side cost to number of passenger trains vary by speed
A larger problem – Part 1

• Set up
 – Chicago-St Louis HSR corridor
 – 285 mile-long shared corridor
 – 17 double-track and 14 single-track segments
 – Passenger train speed: 90 mph (accounting for acceleration and deceleration)
 – Freight train speed: 30 mph
 – Two ends and four intermediate stations on the Chicago-St Louis Corridor

A larger problem – Part 2

• Set up (Cont’d)
 – O-Ds among these stations account for more than 95% of total O-D traffic
 – Three scenarios (based on IDOT HSR study report):
 • 2015 projected passenger demand (5 trains) and current freight demand
 • 2020 projected passenger demand (5 trains) and projected freight demand
 • 2020 projected passenger demand (6 trains) and projected freight demand
A larger problem: Hypergraph
2015 demand

On average, each passenger incurs $46.6 passenger schedule delay cost (rail ticket price between Chicago & St. Louis is $39)

A larger problem
Freight side costs

• When projected freight demand is in place, the freight railroad will suffer significant cost increase
• Strong presence of capacity constraints on this line given passenger and freight demand growth in the future

Current freight traffic (5 passenger trains)
Projected freight traffic (6 passenger trains)
- Foregone demand
- Departure delay
- En-route delay
Concluding remarks (I)
Contributions to planning and methodology

• Proposed a two-level modeling framework for shared-use rail corridor planning
• Comprehensive consideration of cost and time components, including passenger schedule delay and elastic demand
• Employed a hypergraph based modeling approach which is more capable of dealing with train conflicts
• Designed an efficient solution approach to solve the planning problem within short computation time

Concluding remarks (II)
Policy implications

• Schedule delay is an important component in passenger generalized travel cost
• Schedule delay cost diminishes with the number of passenger trains
• Some freight trains will be forced out of service, and foregone demand cost will substantially increase as more passenger services are scheduled
• The heterogeneity of train speed significantly affects freight side cost. It may be desirable to increase freight train speed when HSR is introduced to shared use corridors
Ongoing research

• Extending hypergraph based modelling

• Incorporating developed scheduling models into capacity allocation schemes

Thank you!

Questions?

Contact Information:

312-996-3404

bzou@uic.edu