The Future of Airport Pavement

P-601 Fuel-Resistant Hot Mix Asphalt (HMA) Pavement

• An Interesting Development...
Introduction

- Virgil C. “Lee” Lewis, P.E.
 - AVCON, INC. Principal
 - Northwest Florida Office
 - 24 years with AVCON
 - Professional Civil Engineer; Univ. of Florida
- Robert E. Boyer, P.E., Ph.D.
 - Authority on Airport Pavements
 - Former Asphalt Institute Engineer
 - Extension of AVCON Staff

Presentation Outline

- Presentation Outline:
 - Review of Asphalt Considerations
 - Performance Grade Binders
 - Research: High Polymer Asphalt Mixes
 - P-601: How it Works
 - Recent Successes
 - P-601 Features & Predictions
 - Summary
History of Asphalt Technology

• **Early 1800s**: Europe - “tarmacadam”
• **1870**: United States - Edmund DeSmedt
• **1920s**: Hubbard Field Design - Volumetrics
• **1920s**: Hveem Mix Design - % Oil, Stability
• **1939**: Marshall Mix Design - Inexpensive Tests
• **1960**: Asphalt Rejuvenators - Maintenance
• **1993**: Superpave - Binder/Aggregate Selection
• **2004**: Warm Mix Asphalt - Reduced Emissions
• **Today**: Fuel-Resistant Asphalt - High Polymer

Asphalt Pavement Considerations

• **Deterioration Causes:**
 – Environmental: oxidation, water, freeze/thaw
 – Traffic loading
 – Poor construction
 – Chemical & petroleum exposure

• **Pavement management programs**

• **Coal-tar products:**
 – Can be useful; variety of products
 – May contain Polycyclic Aromatic Hydrocarbons
 – Differing coefficient of thermal expansion
Asphalt Binders: 101

Performance Grades

<table>
<thead>
<tr>
<th>Max. Design Temp.</th>
<th>PG 46</th>
<th>PG 52</th>
<th>PG 58</th>
<th>PG 64</th>
<th>PG 70</th>
<th>PG 75</th>
<th>PG 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Design Temp.</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
</tr>
<tr>
<td>Temperatures in Celsius</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
<td>44.4</td>
</tr>
</tbody>
</table>

Common Polymer-Modified Binders:

- **PG82-22, Highly Modified:** Difficult to Compact
- **PG76-22 (MAC-20):** 767 Traffic; Interstates
- **PG70-22 (AC-40):** Not commonly used

Common Neat “Straight-Run” Binders:

- **PG67-22 (AC-20 Special):** Mid-grade
- **PG64-22 (AC-20):** Florida standard
- **PG64-28:** Colorado standard
- **PG58-28:** Northern regions
- **PG52-28:** Northern regions

Source: Asphalt Institute
Asphalt Binders: 101

Performance Grades

<table>
<thead>
<tr>
<th>Max. Design Temp.</th>
<th>PG 48</th>
<th>PG 52</th>
<th>PG 58</th>
<th>PG 64</th>
<th>PG 70</th>
<th>PG 76</th>
<th>PG 82</th>
</tr>
</thead>
</table>

Temperatures in Celsius

Source: Asphalt Institute

Common Polymer-Modified Binders:
- **PG82-22**, Highly Modified: Difficult to Compact
- **PG76-22** (MAC-20): 767 Traffic; Interstates
- **PG70-22** (AC-40): Not commonly used

Common Neat “Straight-Run” Binders:
- **PG67-22**: One grade “bump”
- **PG64-22**: Standard
- **PG64-28**: Colorado standard
- **PG58-28**: Northern regions
- **PG52-28**: Northern regions

![Diagram showing Binder Quality](image-url)

Temperatures in Celsius
Asphalt Binders: 101

Performance Grades

<table>
<thead>
<tr>
<th>Max. Design Temp.</th>
<th>PG 46</th>
<th>PG 52</th>
<th>PG 58</th>
<th>PG 64</th>
<th>PG 70</th>
<th>PG 75</th>
<th>PG 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Design Temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperatures in Celsius

Source: Asphalt Institute

Common Polymer-Modified Binders:
- PG82-22: Difficult to Compact
- PG76-22: Two grade “bumps”
- PG70-22 (AC-40): Not commonly used

Common Neat “Straight-Run” Binders:
- PG67-22: One grade “bump”
- PG64-22: Standard
- PG64-28: Florida standard
- PG58-28: Colorado standard
- PG52-28: Northern regions

History of High Polymer Mixes

- Experimented in Europe, 1990’s
- Seeking durable, rut-resistant pavement
- International success:
 - 1995: Kuala Lumpur
 - 1997: Cairo
 - 2000: Yemen
 - 2001: St. Maarten
- Domestic success:
 - 2002: LaGuardia
 - 2004: Boston Logan
 - 2006: Charlotte Douglas

P-601 Fuel-Resistant Hot Mix Asphalt (HMA) Pavement

March 17, 2015
P-601: How It Works

• Mixture:
 – Highly modified binder (PG82-22)
 – Fine aggregate gradation:
 • Improved interlock
 • 3/8” max aggregate size
 – Reduced air voids: 2.5% mix design

• Method:
 – Target field air voids: 4.0% in place
 – Lift thickness: 1.0”- 2.0”; 1.5” max. recommended
 – Close monitoring of entire process
Fuel-Resistant Properties

- Fuel Immersion Tests (24-hour soak):

 - With standard PG64-22 Binder: 10% + losses
 - With highly-modified binder: < 1.0% losses

Note: P-601 requires not more than 2.5% loss

Recent Success of P-601

- 2011: Bob Sikes Airport
 - Formalized the P-601 specification
 - Considerations:
 - Temperatures & workability
 - Contractor unfamiliarity
 - Cost
 - Contingencies
- 2012: Herlong Recreational Airport
- 2014: Northwest Florida Beaches International Airport
 - Terminal Apron expansion
 - First AIP-funded application of P-601
P-601 Features:
- More durable, rut-resistant, fuel-resistant pavement
- Reduced maintenance
- P-601 approved by FAA 7/21/14; issued in AC 150/5370-10G
- AIP-Eligible: for pavements “subjected to fuel spills”
- Cost comparison:
 *Approx. 20-25% premium on per-ton price
 *Less than 10% premium on a project cost

P-601 Predictions:
- Improved life-cycle costs
- 25-30% extended pavement life
- Application for runways & taxiways
- Decreasing costs with increasing popularity
- Similar specification approved as military standard:
 UFGS 32 12 15.19 is under consideration
- A PG88-22 specification is coming
P-601 Summary

• P-601 Summary:
 – Non-proprietary; no “secret ingredients”
 – Favorable, proven results
 – Reduced maintenance & life-cycle costs
 – Three-step process...more than just a spec!
 • Mix design
 • Plant production
 • Field compaction
 – Read the specification, follow the specification
 “...The future of airport pavement”

Questions

Virgil C. “Lee” Lewis, P.E.
AVCON, INC.
850-678-0050
vclewis@avconinc.com