Evaluating the Impacts of Real-Time Transit Information in Tampa and Atlanta

Candace Brakewood, PhD
August 7, 2014

Outline

• Motivation
• Research Approach
• Results
 – Tampa, FL
 – Atlanta, GA
• Comparison & Conclusions
MOTIVATION

Motivation: Key Benefits of Transit

1. Congestion
2. Energy/environment
3. Safety
4. Equitable mobility options

… and others.
But transit has a low mode share...

Challenges with Transit

- Reliability is a key issue (Li et al. 2010; Walker 2012)

MARTA’s Bus On-Time Performance

Strategies to Address Unreliability

• Traditional methods of improving reliability are expensive, supply-side approaches, including:
 1. Dedicated right-of-way
 2. Service planning

• An inexpensive, demand-side approach is providing riders with real-time information (Carrel et al. 2013; Schweiger 2011).

Key Prior on the Impacts of Real-Time Information

<table>
<thead>
<tr>
<th>Decreased Wait Times</th>
<th>Increased Satisfaction</th>
<th>Increased Ridership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Seattle</td>
<td>Location: Maryland</td>
<td>Location: Chicago</td>
</tr>
<tr>
<td>Conclusion: Both actual wait times and perceived wait times of real-time bus information users were less than non-users</td>
<td>Conclusion: Overall satisfaction with transit service increased due to real-time shuttle bus information</td>
<td>Conclusion: Modest increase in ridership (126 rides/route on average weekday) attributable to real-time bus information</td>
</tr>
</tbody>
</table>

References:
RESEARCH APPROACH
Impacts of Real-Time Information on Bus Riders

Research Approach: OneBusAway

• Evaluation of real-time information focusing on OneBusAway, which is an open source system

• Where is OneBusAway used?
 – Seattle, WA
 – New York, NY
 – Tampa, FL
 – Atlanta, GA
 – Washington, DC (Beta)

• Open Data accompanies OneBusAway

• See http://onebusaway.org/
Comparison of Cities

<table>
<thead>
<tr>
<th></th>
<th>Tampa</th>
<th>Atlanta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Agency</td>
<td>HART</td>
<td>MARTA</td>
</tr>
<tr>
<td>Size of Ridership</td>
<td>Small (12,665,359)</td>
<td>Medium (68,008,900)</td>
</tr>
<tr>
<td>(Annual Unlinked Bus Trips*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time Information Deployment</td>
<td>OneBusAway spring 2013 (pilot); OneBusAway full deployment in summer 2013</td>
<td>OneBusAway spring 2013 (beta); MARTA apps in fall 2013; OneBusAway full deployment in February 2014</td>
</tr>
<tr>
<td>Primary Data Sources</td>
<td>Web-based surveys</td>
<td>Web-based survey combined with smart card data</td>
</tr>
<tr>
<td>Methodology</td>
<td>Behavioral experiment with a before-after control group design</td>
<td>Disaggregate analysis of daily number of transit trips using smart card data</td>
</tr>
</tbody>
</table>

*Reference: 2012 APTA Fact Book, which uses 2010 National Transit Database statistics

STUDY 1: TAMPA

Co-authors: Dr. Sean Barbeau (USF) and Dr. Kari Watkins (Georgia Tech)
Methodology

Before-After Control Group Research Design

- Motivation: HART provided USF & Georgia Tech special access to real-time data
- Recruitment: HART website/email list (Incentive of 1 day bus pass)
- Measurement: Web-based surveys
- Group Assignment: Random number generator
- Treatment: 5 interfaces of OneBusAway (3 websites & 2 smartphone apps)

Limiting the Treatment: iPhone & Android Apps

Are the 2 Groups Equivalent?

Comparison of Experimental and Control Groups

<table>
<thead>
<tr>
<th>Wilcoxon Sum Rank Test</th>
<th>Sample Size</th>
<th>W</th>
<th>P-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>216</td>
<td>6125</td>
<td>0.514</td>
<td>Not different</td>
</tr>
<tr>
<td>Annual Household Income</td>
<td>207</td>
<td>5599</td>
<td>0.568</td>
<td>Not different</td>
</tr>
<tr>
<td>Household Car Ownership</td>
<td>216</td>
<td>5972</td>
<td>0.737</td>
<td>Not different</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kruskal-Wallis Test</th>
<th>Sample Size</th>
<th>χ^2</th>
<th>P-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has a Valid License</td>
<td>216</td>
<td>1.885</td>
<td>0.17</td>
<td>Not different</td>
</tr>
<tr>
<td>Gender</td>
<td>216</td>
<td>1.475</td>
<td>0.225</td>
<td>Not different</td>
</tr>
<tr>
<td>Employment Status</td>
<td>211</td>
<td>0.377</td>
<td>0.542</td>
<td>Not different</td>
</tr>
<tr>
<td>Ethnicity*</td>
<td>216</td>
<td>9.546</td>
<td>0.002</td>
<td>Different</td>
</tr>
</tbody>
</table>

*Multiple selections allowed. Those who selected more than 1 race categorized as "other."
Analysis of Usual Wait Times

- Identical questions about usual wait time on regular route on the before and after surveys

<table>
<thead>
<tr>
<th>Usual Wait Time (minutes)</th>
<th>Sample Size</th>
<th>Before Mean (SD)</th>
<th>After Mean (SD)</th>
<th>Difference Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>102</td>
<td>10.71 (3.88)</td>
<td>10.50 (4.25)</td>
<td>-0.21</td>
</tr>
<tr>
<td>Experimental Group</td>
<td>107</td>
<td>11.36 (4.06)</td>
<td>9.56 (4.68)</td>
<td>-1.79</td>
</tr>
</tbody>
</table>

Comparison: Difference of Means: t=2.65, two-tailed p=0.009 < 0.01

- Experimental group post-wave survey only: Has using OneBusAway changed the amount of time you wait at the bus stop?

![Bar chart showing wait time distribution]

Analysis of Feelings While Waiting for the Bus

- Identical questions about feelings while waiting asked on the before and after surveys

<table>
<thead>
<tr>
<th>Feelings</th>
<th>Control Group % Frequently + Always</th>
<th>Experimental Group % Frequently + Always</th>
<th>Diff. in Gain Scores Wilcoxon Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>Productive</td>
<td>11%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Anxious</td>
<td>18%</td>
<td>19%</td>
<td>10%</td>
</tr>
<tr>
<td>Relaxed</td>
<td>34%</td>
<td>34%</td>
<td>26%</td>
</tr>
<tr>
<td>Frustrated</td>
<td>24%</td>
<td>26%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Significance: * p<0.10; ** p<0.05; *** p<0.01

- Experimental group post-wave survey only: Since you began using OneBusAway, do you feel more relaxed when waiting for the bus?

![Bar chart showing feelings distribution]
Analysis of Satisfaction

- Identical questions about satisfaction asked on the before and after surveys

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Experimental Group</th>
<th>Diff. in Gain Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Satisfied</td>
<td>% Satisfied</td>
<td>Wilcoxon Test</td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>How frequently the bus comes</td>
<td>32%</td>
<td>41%</td>
<td>40%</td>
</tr>
<tr>
<td>How long you have to wait for the bus</td>
<td>39%</td>
<td>34%</td>
<td>46%</td>
</tr>
<tr>
<td>How often the bus arrives at the stop on time</td>
<td>54%</td>
<td>45%</td>
<td>59%</td>
</tr>
<tr>
<td>How often you arrive at your destination on time</td>
<td>57%</td>
<td>53%</td>
<td>63%</td>
</tr>
<tr>
<td>How often you have to transfer buses to get to your final destination</td>
<td>44%</td>
<td>42%</td>
<td>36%</td>
</tr>
<tr>
<td>Overall HART bus service</td>
<td>63%</td>
<td>59%</td>
<td>58%</td>
</tr>
</tbody>
</table>

Significance: * p<0.10; ** p<0.05; *** p<0.01

- Experimental group post-wave survey only: Since you began using OneBusAway, do you feel more satisfied riding HART buses?

Analysis of Bus Trips/Week

- Identical questions about the number of HART bus trips/week on the before and after surveys

<table>
<thead>
<tr>
<th>Trips/Week</th>
<th>Sample Size</th>
<th>Before Mean (SD)</th>
<th>After Mean (SD)</th>
<th>Difference Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>107</td>
<td>7.03 (3.79)</td>
<td>6.63 (4.09)</td>
<td>-0.40</td>
</tr>
<tr>
<td>Experimental Group</td>
<td>110</td>
<td>7.09 (3.94)</td>
<td>6.40 (3.71)</td>
<td>-0.69</td>
</tr>
</tbody>
</table>

Comparison

Difference of Means: t=0.66, two-tailed p=0.512

- Experimental group post-wave survey only: Has using OneBusAway changed the number of HART bus trips that you take?

Bottom graphic: n=108.
0% selected “I ride somewhat less.”
Figures rounded to the nearest whole person.
Tampa Conclusions

- Significant improvements in the “waiting experience”
 - Decreases in self-reported usual wait times
 - Decreases in negative feelings, particularly frustration
 - Increases in satisfaction with wait times

- Little evidence supporting a change in transit trips
 - Approx. 1/3 of RTI users stated they ride the bus more frequently, perhaps because of:
 - Affirmation bias of respondents
 - Scale of measurement (trips per week)
 - Only riders within sphere of transit agency

- Contribution is using a behavioral experiment to evaluate “apps”

STUDY II: ATLANTA

Co-author: Dr. Kari Watkins (Georgia Tech)
Methodology

- **Background on Real-Time Information:**
 - MARTA launched apps in November 2013
 - OneBusAway launched in February 2014

- **Method:** Before-After Analysis of MARTA Trips
 - April 2013 to April 2014

- **Unit of Analysis:** Individual rider

- **Primary Data Source:** Breeze Card smart cards
 - Number of transit trips on bus and train

Smart Card Data

- **Date:** Day determines ‘before’ & ‘after’ trips
- **Mode:** Bus + Rail
- **Spatial Unit:** Station (Rail) & Route (Bus)
Survey Data

- **Data Collection**
 - Web-based survey conducted first week of May 2014

- **Recruitment**
 - Both real-time information (RTI) users and non-users

- **Matching with Smart Cards**
 - 669 participants entered survey software
 - 538 provided a 16 digit smart card number
 - 494 matched usable, active smart cards

Source of Breeze Card Image: itsmarta.com

Conditions Imposed on the Dataset

- **Initial**: Combined Survey/Smart Card Dataset (n=494)

- **Condition 1**: Panel Eligibility *(April 2013 + April 2014)*
 - Real-Time (n=431)
 - Smart Card (n=305)

- **Condition 2**: Complete & Unique *(One Card = One Person)*
 - Complete with One Breeze Card (n=219)
 - Complete with No Other Fare Media (n=193)
 - Unique without Sharing Breeze Card (n=159)

- **Condition 3**: Congruent *(That Card = That Person)*
 - Closely Congruent (n=135)
 - Perfectly Congruent (n=100)
Before-After Comparison of MARTA Trips

Use of Real-Time Information (RTI)

<table>
<thead>
<tr>
<th></th>
<th>All Data</th>
<th>Closely Congruent</th>
<th>Perfectly Congruent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>302</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>April 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10.2</td>
<td>15.6</td>
<td>12.8</td>
</tr>
<tr>
<td>SD</td>
<td>20.2</td>
<td>21.7</td>
<td>22.2</td>
</tr>
<tr>
<td>April 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>21.9</td>
<td>21.7</td>
<td>21.1</td>
</tr>
<tr>
<td>SD</td>
<td>29.3</td>
<td>27.5</td>
<td>29.8</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>11.7</td>
<td>6.1</td>
<td>8.3</td>
</tr>
<tr>
<td>SD</td>
<td>27.8</td>
<td>25.4</td>
<td>25.1</td>
</tr>
<tr>
<td>t</td>
<td>-3.478</td>
<td>-1.097</td>
<td>-1.732</td>
</tr>
<tr>
<td>p</td>
<td>0.0006</td>
<td>0.276</td>
<td>0.0905</td>
</tr>
</tbody>
</table>

Regression Analysis: Difference in Trips

<table>
<thead>
<tr>
<th>Dataset</th>
<th>All Data</th>
<th>Closely Congruent</th>
<th>Perfectly Congruent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>20.887</td>
<td>37.115</td>
<td>36.146</td>
</tr>
<tr>
<td>Use Real-Time Information</td>
<td>6.61</td>
<td>0.564</td>
<td>2.651</td>
</tr>
<tr>
<td>Has a License</td>
<td>-18.633</td>
<td>-3.944</td>
<td>-38.436</td>
</tr>
<tr>
<td>African American</td>
<td>16.544</td>
<td>18.47</td>
<td>10.815</td>
</tr>
<tr>
<td>Increased Cars in Household</td>
<td>-8.215</td>
<td>-4.237</td>
<td>-2.159</td>
</tr>
<tr>
<td>Aware of Service Change</td>
<td>0.012</td>
<td>6.231</td>
<td>6.647</td>
</tr>
<tr>
<td>R²</td>
<td>0.15</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>Observations</td>
<td>477</td>
<td>131</td>
<td>98</td>
</tr>
</tbody>
</table>

rt = 4 weeks in April 2013 and April 2014 beginning with the first Tuesday of the month.

*p<0.1; **p<0.05; ***p<0.01;#

Number of observations reduced due to missing responses for specific questions.

Values shown in parentheses are robust standard errors.
Perceived Changes: Riding MARTA Trains Perfectly Congruent

- Has using an app with real-time information changed the NUMBERS OF TRIPS that you take on MARTA TRAINS?*
 - I ride much more often: 7%
 - I ride somewhat more often: 14%
 - I ride about the same: 76%
 - I usually don't check train RTI: 1%
 - I usually don't ride MARTA trains: 3%

- Has using an app with real-time information changed the amount of time you spend WAITING for MARTA TRAINS?**
 - I spend about the same amount of time waiting: 24%
 - I spend somewhat less time waiting: 53%
 - I spend much less time waiting: 18%
 - I usually don't check train RTI: 5%

- Has using an app with real-time information changed how SATISFIED you are with MARTA TRAIN service?
 - I feel much more satisfied: 13%
 - I feel somewhat more satisfied: 47%
 - I feel about the same: 26%
 - I feel somewhat less satisfied: 3%
 - I feel much less satisfied: 8%
 - I usually don't ride MARTA trains: 3%

Sample Size in Real-Time Information Users Meeting Conditions (A-3B) (n=38).
*Zero answers for “I ride somewhat less” or “I ride much less.”
**Zero answers for “I spend much more time waiting” or “I spend somewhat more time waiting.”

Atlanta Conclusions

- Conclusions
 - Full Dataset (n=494): RTI users increased transit trips
 - Datasets with Conditions: No significant difference between RTI users and non-users
 - Many RTI users perceived a decreased in wait times and increased satisfaction with MARTA service

- Limitations
 - Non-probability sampling
 - Decreasing sample size

- Contribution
 - Method to combine smart card and survey data to conduct panel/before-after analyses
COMPARISON & CONCLUSIONS

Comparison of Key Findings

<table>
<thead>
<tr>
<th>Transit Agency</th>
<th>Methodology</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampa</td>
<td>Behavioral experiment with a before-after control group design</td>
<td>Little evidence supporting a change in bus trips; Significant improvements in the waiting experience, particularly wait times</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Before-after analysis of transit trips</td>
<td>Little evidence supporting a change in bus/train trips; Perceived improvements in wait times and overall satisfaction with MARTA</td>
</tr>
</tbody>
</table>
Concluding Remarks

Decreased Wait Times
- Atlanta
- Tampa

Increased Satisfaction
- Atlanta
- Tampa

Increased Ridership
- New York City (coming soon!)

QUESTIONS?
Contact: cbrakewood@gmail.com

Acknowledgements: Thanks to my PhD advisor at Georgia Tech, Dr. Kari Watkins, and Dr. Sean Barbeau at USF who was the technical lead on the Tampa study. This work was funded by a US DOT Eisenhower Graduate Fellowship, the National Center for Transit Research (NCTR), the National Center for Transportation Systems Productivity and Management (NCTSPM), and Georgia Tech’s GVU Center. I am also very grateful to the Hillsborough Area Regional Transit Authority (HART) for their support, particularly Shannon Haney, and the Metropolitan Atlanta Rapid Transit Authority (MARTA) for providing the smart card data.
References

