EVALUATION OF CAMERA-BASED SYSTEMS TO REDUCE TRANSIT BUS SIDE COLLISIONS

Pei-Sung Lin, Ph.D., P.E., PTOE
Chanyoung Lee, Ph.D. PTP
Achilleas Kourtellis, Ph.D.

INTRODUCTION

• Transit buses experience side collisions when changing lanes, merging or turning

• One of the factors contributing to side collisions is the side blind zone due to the limited field of view of the mirrors

• Many studies have been conducted, offering sensor systems as countermeasures. They are not however reliable and do not work 100% of the time
PROJECT METHODOLOGY

• Conduct literature review to compare existing mirror-, sensor-, camera-based systems

• Perform volumetric measurements and comparison of the Field of View (FOV) of mirrors and camera system

• Design and perform controlled driving test to evaluate camera-based systems

LITERATURE REVIEW

• Previous studies and prototypes have shown:

  • mirrors leave a blind zones around the vehicle

  • sensor systems have too many false alarms, can be distracting to the driver and do not work 100% of the time

  • camera systems have been used only for machine vision, and not for enhancing the view of the driver
CONTROLLED DRIVING TEST

Objectives:
1. Test if drivers can perceive distance similarly with mirrors and cameras (maneuver 1)
2. Test if drivers can identify side blind zone and use system to eliminate (maneuver 2)
3. Examine distance perception in static conditions
4. Collect feedback from drivers on enhancements for the camera system

Note: 28 participating bus drivers
CONTROLLED DRIVING TEST

- 28 Drivers recruited from USF transit system
- Mix of ages (under 25 to 50+)
- Mix of driving experience (0.5-52 years)
- Two types of buses used: cutaway and low floor
- Eleven drivers had previous experience with rearview video system

CONTROLLED DRIVING TEST

- Closed course
  1. Drive around course twice
  2. Perform driving maneuvers
  3. Perform static perception test
RESULTS OF FIRST MANEUVER

Distance perception in dynamic conditions

Maneuver 1

With Mirror

Minimum stopping distance for following vehicle

With Camera

Minimum stopping distance for following vehicle

RESULTS OF SECOND MANEUVER

Maneuver 2

Mirror FOV
RESULTS OF SECOND MANEUVER

Vehicle not visible in mirror  Vehicle visible in camera

STATIC DISTANCE PERCEPTION

Legend:

- M = using mirror, C = using camera
- Person standing location

Bus was stopped here

Drawing is in scale
RESULTS OF DRIVER SURVEY

• The system reduces or eliminates the side blind zone compared to the mirrors
• The system can help drivers reduce side crashes by providing a better view
• In general the system can improve bus safety
• With the system they can observe late arriving passengers
• Drivers would like to have this system on the bus they drive everyday
• Felt comfortable performing a lane change maneuver with the system
• The system can help reduce crashes during lane change maneuvers

OTHER SYSTEM BENEFITS

At nighttime
OTHER SYSTEM BENEFITS

During Rain

Avoid hitting pedestrians
Thank You!

Comments and Questions